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Abstract .  Irreversibly reading systems have in general a distribution of reaction 
raica, ".L. !-..~~~-.:~~~- - ~ - . : - . . . I I . .  ~ 1 1 ~ ~ ~ : - ~ ~ 1 -  -.-.:LB. .- ---. :L>. 
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bonds, and thus the distribution changes in time. The losses of possible bonds are 
separated into: direct loss of the bond formed; and cornloled losses which occur via 
the interaction rule or structural considerations. We distinguish between diffusion- 
and reaction-limited processes, and pursue only the latter case. 

For reaction-limited processes with only direct losses the time dependence of the 
distribution of reaction rates is governed by an exponential factor. The solution for 
the case of correlated losses turns out to be closely related to those of the much 
simpler case of direct losses only. Within a linearized model for the correlation, the 
par t ia lar  features of the interactions can be decoupled from the general statistical 
problem, casting the former into an 'effective time' parameter and thus yielding a 
general formulation of the statistics. 

i. introduction 

Effectively irreversible interactions occur in nature in a variety of situations, as for 
instance colloidal aggregation [1,2] where mesoscopic particles stick together by van 
der Waals forces when they meet; chemical reactions for which the back reaction is 
negligible as, for example, in polymerization [3], the famous Belousov-Zhabotinski 

All these phenomena are examples of time-dependent stochastic processes which 
have been investigated as birth-death processes [ 6 ] ,  with deterministic rate equations 
for chemical reactions [7], stochastic models for chemical reactions [8,9] with emphasis 
on the formation of structure [lo], with stochastic models in population dynamics [ l l ]  
with respect t o  self-organization [12], in connect,ion with cellular au tomata  [13], and 
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Despite this extensive work 011 irreversibly interacting systems, less attention has 
been paid to the fact t ha t  if we start, with a distribution of direrent and competing 
species, fast-rea,cting species a.re favourably eliininat,ed from t,he system, compared 
with slowly reacting ones; and tliiis tlie distribution of species cl~nnges cont,inually due 
to these reactions. The  dynamics of Lliis effect is the  subject of this work. 

!E irreve:sib!y reacting s y s k - s  ?WO vzri.b!es ~ p p e z r  in a nst~irz! wzy. One iz the 
time t ,  which has a distinct direction due to tlie irreversibility, and tlie other is the 
reaction rate k >  defined as the probability per unit time for a irreversible reaction 
between two individuals. In general not all individuals are eqoal.with respect to their 
interaction with other individuals and the system has a distribnt,ioii p ( k ,  t )  of reaction 
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rates. The  individuals, or particles, continually react and thus a dynamical evolution 
of the distribution p(k ,  t )  is expected. In this paper we discuss the essential features of 
the dynamical evolution of the distribution of reaction rates for irreversibly interacting 
systems. Though the theory is applicable to  any irreversibly reacting system, for the 
sake of clarity we present it in terms of particles that  collide and stick, as may be 
encountered in colloidal aggregation [I ,  21. 

Figure 1 distinguishes different regimes of binary particle interactions to  show the 
context of the present work. The simplest is the hard-core potential, where elastic 
collisions allow for thermalization and the whole system is well described by equilib- 
rium statistical mechanics. An additional weak attractive potential allows for phase 
transitions, still well described by equilibrium statistical mechanics. 

R Vessel and R C Ball 

Figure  1. T h e  characteristic forms for the potential V ! v )  for tw-partide interaction 
as a function ofseparation I: ( a )  hard-core potential; ( a )  we& attractive interaction; 
(c )  irreversible interaction without repulsive barrier; and ( d )  irreversible interaction 
with a repulsive barrier. 

If the attractive potential exceeds any kinetic energy in thesystem (figure l ( c ) ) ,  
the interaction (e.g. sticking) is irreversible. For a vanishing potential outside the 
interaction region, the particies react a i  first contaci and ihe reaciion raie is oniy 
determined by the motion of the particles in the host medium. This regime is known 
as diffusion-limited. If, however, the attractive potential is preceded by a repulsive 
barrier (figure l ( d ) ) ,  a particle will, on average, collide with many other particles 
until it reacts with one of them irreversibly. For a repulsive barrier t o  be 'sufficiently' 
high compared with the typical kinetic energy of the particles, the average number of 
coiiisions with aii other particies before reaction is high and we assiiilie that all twc- 
particle collisions are equally likely. The reaction rate is given by k a exp(-Vb/kBT), 
where V, is the height of the repulsive barrier and T the temperature. The reaction 
is limited by the probability for reaction during collision and this regime is known as 
'reaction-limited'. The  height of the repulsive barriers between two particles may in 
general vary over a wide range due to  different sizes, shapes or charge clouds and thus 
Lurmrrrg a "lsLrl""Llun 01 U a T r l c T  llelgrlLb W l l l C l l  yrcrua a "'bbII""III"II "1 LC@..CLIIV.I 

The evolution in time of this distribution will be studied in the following. 
Assuming that any interaction involves two particles only, it is convenient t o  work 

in terms of 'possible bonds' between two particles, instead of terms of particles. We a- 
sume that each possible bond is characterized by afixed reaction rate l e ,  the probability 
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per unit time of the corresponding reaction occurring during collision. In section 2 
we study the simple situation where a reaction of a possible bond eliminates only 
this particular possibility from the system, i.e. direct losses. An analytic solution for 
p(k,t)  can be written down and shows an exponential time dependence. In section 3 
we extend our analysis to situations where the reaction of a possible bond eliminates 
not only this particular possible bond (direct losses) but also correlated bonds (1) 
that shared one of the two particles forming the particular possible bond and (2) that 
become sterically inhibited due to structure . The solution for j t ( k ,  t )  shows a striking 
analogy in form with the solution for the much simpler case of direct losses only. This 
analogy is further exploited in section 4 by using a linearized model for approximating 
the correlation. Within this approximation the two situations, direct and correlated 
losses, are described by the same equations which can only he distinguished by an 
‘effective time’, characteristic for each particular system. In section 5 we give an 
illustrative example and finally in section 6 we summarize our results. 

2. Direct losses only 

The simplest situations to study are those where the reaction of a possible bond 
eliminates only this particular bond. Two examples are represented in figure 2. In 
figure 2(a) particles react with a wall (e.g. electrode, catalyser, . . .) but not with each 
other. Each particle forms a possible bond with the wall and each possible bond has 
a reaction rate k. A particle drops out of the system after the reaction and thus does 
not change the quality of the wall for the following particles. In figure 2 ( b )  particles 
are distributed on a line and form possible bonds with their uemest neighbourst. The 
reaction of a possible bond closes only this particular bond. 

0 @ 

Figure 2. Two examples for irreversibly interacting partides where only direct losses 
of possible bonds occur: ( a )  particles react with a wal l  and not with each other: ( a )  
partides on a line react only with their two nearest neighbours. 

Let B ( k , t )  be the number of possible bonds with reaction rate k at  time t and 
B,(t) = s,“ B(k, t )dk,  the total number of possible bonds at  time t .  The normalized 
distribution of reaction rates is defined by 

(1) 

t Strictly speaking in the one-dimensional case the dilution of particles by reaction should be 
taken into account by the onsati dB(k,f)/dt = - k B ( k , t ) B o ( t )  which yields the solution @ ( k , t )  = 
~ ( k ,  0)exp (-k fd Bo(t’) df’) [I,” p ( k ,  0)exp (-k Bo(f’)df’) dk]-l, analogous to thesolution de- 

veloped in section 4. 



454 

The time evolution is given in terms of E ( k , t )  by 

R Wessel and R C Ball 

since k is the probability per unit time of a bond being lost from the population 
of possible bonds. Substituting B ( k , t )  from (1) into (2), defining a time-dependent 
average reaction rate 

and eliminating a term, [Bo(t)]-'[dB,(t)/dt] by integrating over k in ( 2 ) ,  yields the 
following equation for the evolution of the normalized distribution 

-- dp(k , t )  - [ ( k ) ( t )  - k ] p ( k , t )  
dt (4) 

The distribution turns around the pivot (k)(t) ,  increasing for k < ( k ) ( t )  and decreasing 
for k > (k)(t) .  The solution is 

p ( k , t )  = p ( k , o ) e x p  ( l [ ~ t ~ - k ~ d t ' ) .  ( 5 )  

Integrating over k and using the fact that p ( k ,  t )  is normalized to one, we get 

m (k)(l) = -%In  d ( J  p(k,O)e-"dk) 
0 

As an explicit example we might think of a system of particles that aggregate on a 
wall and which have been prepared to have, initially, a uniform distribution of reaction 
rates up to a maximum value of K .  The aggregation starts a t  t = 0 with the average 
reaction rate ~ / 2  and we find in the long-time limit (k) tends to 0 with a l / t  time 
dependence. 

3. Direct and correlated losses 

A more complex situation occurs if the reaction of a possible bond eliminates not only 
this particular bond (direct loss) but other bonds as well which are in general correlated 
to the particular bond. For instance in figure 3 ( a )  each particle forms a possible bond 
with all other particles. If the particles drop out of the system after the reaction, 
then the reaction of a possible bond (two particles) eliminates all ot,her bonds that 
shared one of these two particles as well. Alternatively the reaction may be allowed 
to continue to lead to a non-trivial structure, as is the case in colloidal aggregation [2]  
(figure 3 ( b ) ) :  then the sticking of two particles belonging to two different clusters 
may sterically inhibit other possible bonds, whether both share one of the sticking 
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Figure 3. (a)  Correlated losses: two irreversibly interacting particles drop out 
of the system and thus eliminate all possible bonds that were related to these two 
particles. ( b )  Correlated and structural losses: two irreversibly interacting particles 
belonging to two different clusters stick together and thus sterically render other 
bonds impossible. These stnicturally inhibited bonds may be those belonging to the 
two particles (full line) but 0th- (broken line) as well. 

particles or not. The correlations may occur via the interaction rule or structural 
considerations. 

We call two possible bonds which may inhibit each other by reaction an incom- 
patible pair of possible bonds. The possible bonds are solely distinguished by the 
reaction rate k which is determined by the interaction during collision of the particles 
involved. We assume that due to  low reaction rates any spatial fluctuation (e.g. in 
particle density) have time to equilibrate, so that incompatibility is the sole source 
of correlation. Let L(k‘, k) be the number of incompatible pairs of possible bonds 
with reaction rate k’ and k. The reaction of the possible bonds with reaction rate k’ 
eliminates L(k’, k) possible bonds with reaction rate k. Thus  we find the following 
ansatz for the change of B ( k , t )  with time due to reactions 

In contrast for fast-reacting systems the assumptions leading to  (8) do not bold and 
only the inclusion of fluctuations can yield the right kinetics [9,14]. Using the defini- 
tions (1) and l ( k ’ , k )  = L(k‘,k)/Bo(t), and eliminating a term [Bo(t)]-’dB0(t)/dt by 
integrating over k in (8) we get an equation for p ( k ,  t )  

Now l ( k ’ ,  k) can be separated into three classes of pairs of possible bonds, those 
with no site, one site and two sites in common: 

l(k’,k) = ao2(k‘,k)+b&(k’,k) + e y 2 ( k ’ , k )  (10) 

where a ,  band care  the number of incompatible pairs of possible bonds per bond, with 
respectively no site, one site and two sites in common. For each case the normalized 
distribution of the reaction rates for a pair of bonds is given respectively by a2(k‘, k), 
P2(k‘,k) and y2(k‘, k). The joint probabilities are conveniently expressed via the 
conditional probabilities that  in a pair of possible bonds one has  the reaction rate k’, 
given that the other has reaction rate k: 

a z ( k ’ ,  k) = P(k, tb(klk’)  (1la) 
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The conditional probability a(k1k’)  expresses the correlation between two possible 
bonds with no site in common, which may occur viastructural considerations, The cor- 
relation between two possible bonds with one site in common is expressed by p(k1k‘). 
This correlation occurs via the nature of the interaction between two particles. Finally 
y(k1k’) expresses the correlation of a bond with itself. This term is responsible for 
direct losses. 

Substituting (11) and (10) into (9) yields 

where the conditional average reaction rates are 

If in a pair of possible bonds with no site and one site in common, the reaction rates 
were uncorrelated, the a(k1k‘)  and P(k(k’) would he p ( k ’ , t )  and the average reaction 
rates would coincide with the Conditional ones and the distribution in (12) would 
change due to direct losses only. Thus for uncorrelated bonds we recover the simple 
case of direct losses only as described in section 2. 

Equation (12) can be integrated to give the solution 

Integrating over k and using the normalization of p(k ,  t) we get 

m 1 

( k ) ( t )  = (a + -d b + c)dt In [l p(k,O)exp (-1 ~(k‘ ) ,+b(k ‘ )~+ckd t ’ )  dk] (15a) 

t 

p(k , t )=p(k ,O)exp (-1 ~ ( k ’ ) , + b ( k ’ ) ~ + c k d t ‘  

x [la p ( k ,  0) exp (- it a@‘), + + e t  dt’ (156) 

Though the lack of an explicit expression for a(k1k’)  and p(k lk ‘ )  inhibits a further 
analytic exploration of (15), we find the satisfying result that solutions for the situation 
of correlated losses, (15), are analogous in form to the solutions of the much simpler 
case of direct losses only ((6) and (7)). This analogy becomes even more obvious in 
the following approximation. 
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4. Linear correlation approximation 

If the distribution p ( k ,  t )  is ‘not too wide’ we may approximate (k’)- and (k‘)@ by its 
expansion to first order around ( k ) :  

( k ’ ) ,  = @ ’ ) - , k = ( k )  + [k - M l C  

Since ( k )  = JF(k’),p(k,t)dk and analogous for ( k ‘ ) p  we find from (16a) and (16c) 
that (k’)e ,k=(k)  = ( k )  = and thus 

Equations (17) and (18) may also he thought of as a model by itself. Substituting 
(17) and (18) into (14) we get 

p(k ,  t )  = ~ ( k ,  O)exp [ ( k )  - k](aC + bq + c) dt’ . (19) (6 1 
Integrating over k and using normalization yields the final result 

m d ( k )  =---In (/ p(k,O)exp(-k@)dk 
d 0  ,, 

(20c) 

Equations (20a) and (20b) are distinguished from (6) and (7) only by the label of the 
time variable. All information about the details of the system are condensed in the 
new ‘effective time’ 0. Informabion about the correlation and number of bonds is 
given by C, q and a, b, respectively. Since 0 depends in an integral form on <,q,a and 
b it contains the history as well. In the case of direct losses only, i.e. no correlation 
with other bonds, a and b cancel in the derivation and since c = 1, the effective time 
0 coincides with the real time t .  
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5 .  Example 

As an instructive example we think of a colloidal aggregate for which the initial di& 
tribution has  been prepared to be Gaussian: 

exp[-(k - k,)2/2u2] 
1 

’(“ O )  = f iuF(k, / f iu)  

where IC, is the average reaction rate a t  t = 0 and U is the width of the distribution. 
The error function 

in the normalization factor occurs due t o  the constraint that k 2 0. Substituting (21) 
into (20a) and (206) we get 

(u/&)exp[-(1/2u2)(ko - u ~ Q ) ~ ]  

F((1 / f iu) (ko  - u2Q))  
(k)(Q) = [k, - uZQ] + 

exp{-(l/2uz)[k - (k, - u2Q)]’} (236) 
1 

f iuF(( l / f iu ) (k ,  - u 2 0 ) )  
d k ,  0)  = 

For u20 << k, the average reaction rate (k) decreases linearly in Q and decreases 
faster for a broader distribution, whereas in the opposite limit a2Q >> k,, the average 
reaction rate tends asymptotically t o  zero. The distribution remains of Gaussian form 
with the maximum at  k, - u2Q. Due to the constraint that k 2 0 the maximum does 
not coincide with the mean value and in particular for uzQ > k, is located on the 
negative axis. This explicit expression for the time dependence of the average reaction 
rate might be particularly useful in the determination of the cluster size distribution 
via a mean field rate equation [15]. 

6.  Summary 

In summary we have studied the time dependence of the reaction rate distribution 
for irreversibly interacting systems. The problem is formulated in terms of possible 
bonds between particles. In the reaction-limited regime all possible bonds are equally 
likely and the reaction is only determined by the reaction rate. The reactions con- 
tinually eliminate possible bonds from the system. In the case of direct losses only, 
the distribution has an exponential time dependence. It turns out that the solution 
for the more complex case of correlated losses is closely related to the simpler case of 
direct fosses only. This analogy is further exploited by approximating the conditional 
average reaction rate by its expansion to first order. In this approximation we recover 
the solution of the direct-losses-only case, where the time is replaced by an ‘effective 
time’. This ‘effective time’ accommodates the details of the interactions and thus 
decouples them from the general statistical problem. Finally we give an instructive 
example where the initial distribution is taken to be Gaussian. 
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